Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity.
نویسندگان
چکیده
BACKGROUND AND PURPOSE The advent of new anti-angiogenic therapies has created the need for better defining regions of abnormal vascularity in order to add specificity to the classification of high-grade gliomas. This study investigated MR imaging parameters corresponding to the peak height and percent recovery of the T2* relaxivity curve to characterize angiogenesis and microvascular leakage within the T2 and contrast-enhancing abnormalities in high-grade gliomas. METHODS Dynamic susceptibility-weighted MR imaging was performed in 41 patients with untreated high-grade glioma during the first pass and recirculation phase of a gadolinium bolus injection. Normalized peak height and percent recovery of the post-bolus signal were calculated on a voxel by voxel basis within the T2 and contrast-enhancing lesions (T2L, CEL) and compared between grade III and grade IV gliomas. RESULTS Grade IV gliomas showed significantly larger volumes of abnormal peak height and recovery compared to grade III patients (P < .01). Within the CEL, grade IV gliomas exhibited significantly higher peak height values than grade III patients (P < .05). Enhancing grade III patients (n = 7) demonstrated higher minimum values of percent recovery within both regions compared to grade IV patients. Non-enhancing grade III gliomas (n = 11) had significantly elevated minimum percent recovery values when compared to the T2L-CEL region in grade IV patients (n = 23; P < .05). CONCLUSION Direct measurement of the spatial distribution of tumor microvasculature characteristics has shown considerable heterogeneity within different regions of grade III and grade IV gliomas. Peak height and percent recovery parameters help to improve the specificity for characterization of the degree of angiogenesis and microvascular leakage in these tumors and may be useful in evaluating response to treatment.
منابع مشابه
Grading of Glioma Tumors by Analysis of Minimum Apparent Diffusion Coefficient and Maximum Relative Cerebral Blood Volume
Background: Gliomas are the most common primary neoplasms of the central nervous system. Relative cerebral blood volume (rCBV) could estimate high-grade Gliomas computed with dynamic susceptibility contrast MR imaging which it is artificially lowered by contrast extravasation through a disrupted blood-brain barrier. Objectives: Our intent was to clarify the usefulness of diffusion-weighted m...
متن کاملQuantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging.
PURPOSE To implement an arterial spin labeling technique that is feasible in routine examinations and to test the method and compare it with dynamic susceptibility-weighted contrast material-enhanced magnetic resonance (MR) imaging for evaluation of tumor blood flow (TBF) in patients with brain tumors. MATERIALS AND METHODS Thirty-six patients with histologically proven brain tumors were exam...
متن کاملDiagnostic Performance and Safety of Positron Emission Tomography Using 18F-Fluciclovine in Patients with Clinically Suspected High- or Low-grade Gliomas: A Multicenter Phase IIb Trial
Objective(s): The study objective was to assess the diagnostic performance of positron emission tomography (PET) for gliomas using the novel tracer 18F-fluciclovine (anti-[18F]FACBC) and to evaluate the safety of this tracer in patients with clinically suspected gliomas.Methods: Anti-[18F]FACBC was administered to 40 patients with clinically suspected high- or low-grade gliomas, followed by PET...
متن کاملDynamic susceptibility contrast-enhanced perfusion and conventional MR imaging findings for adult patients with cerebral primitive neuroectodermal tumors.
BACKGROUND AND PURPOSE Preoperative differentiation of primitive neuroectodermal tumors (PNETs) from other tumors is important for presurgical staging, intraoperative management, and postoperative treatment. Dynamic, susceptibility-weighted, contrast-enhanced MR imaging can provide in vivo assessment of the microvasculature in intracranial mass lesions. The purpose of this study was to determin...
متن کاملDiffusion Tensor Imaging for Glioma Grading: Analysis of Fiber Density Index
Introduction: The most common primary tumors of brain are gliomas and tumor grading is essential for designing proper treatment strategies. The gold standard choice to determine grade of glial tumor is biopsy which is an invasive method. The purpose of this study was to investigatethe role of fiber density index (FDi) by means of diffusion tensor imaging (DTI) (as a noninvasive method) in glial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 26 6 شماره
صفحات -
تاریخ انتشار 2005